Leg stiffness of sprinters using running-specific prostheses.

نویسندگان

  • Craig P McGowan
  • Alena M Grabowski
  • William J McDermott
  • Hugh M Herr
  • Rodger Kram
چکیده

Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring-mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of unilateral amputees and both ALs of bilateral amputees compared with the bioL of non-amputees for nearly every variable measured. Leg stiffness remained constant or increased with speed in bioL, but decreased with speed in legs with RSPs. The decrease in leg stiffness in legs with RSPs was mainly owing to a combination of lower peak ground reaction forces and increased leg compression with increasing speeds. Leg stiffness is an important parameter affecting contact time and the force exerted on the ground. It is likely that the fixed stiffness of the prosthesis coupled with differences in the limb posture required to run with the prosthesis limits the ability to modulate whole leg stiffness and the ability to apply high vertical ground reaction forces during sprinting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing the Mechanical Properties of Running-Specific Prostheses

The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to chara...

متن کامل

Prediction of sprint active women performance using vertical and leg stiffness

Introduction: The ability to attain high level of speed is an essential component of success in many sports fields. However, physical qualities that underpin this ability remain unclear. The purpose of this study was to investigate the role of leg stiffness and vertical stiffness in predicting sprint running. Methods: 50 healthy females were selected among physical education students. The requi...

متن کامل

Effect of Running Speed and Leg Prostheses on Mediolateral Foot Placement and Its Variability

This study examined the effects of speed and leg prostheses on mediolateral (ML) foot placement and its variability in sprinters with and without transtibial amputations. We hypothesized that ML foot placement variability would: 1. increase with running speed up to maximum speed and 2. be symmetrical between the legs of non-amputee sprinters but asymmetrically greater for the affected leg of sp...

متن کامل

Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.

On curves, non-amputees' maximum running speed is slower on smaller radii and thought to be limited by the inside leg's mechanics. Similar speed decreases would be expected for non-amputees in both counterclockwise and clockwise directions because they have symmetric legs. However, sprinters with unilateral leg amputation have asymmetric legs, which may differentially affect curve-running perfo...

متن کامل

Free Moment Application by Athletes with and without Amputations in Linear and Curved Sprinting

The purpose of the present study was to describe free moment (FM) application to the ground in high speed linear and curved running in athletes with unilateral amputations and non-amputee athletes. The results indicate that peak FM amplitudes are about three times higher in sprinting compared to running at distance running speeds. Curved running decreases internal rotation FM amplitudes of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 73  شماره 

صفحات  -

تاریخ انتشار 2012